

Titerbestimmung von EDTA

Beschreibung

Dieser Applikationsbericht beschreibt das allgemeine Verfahren zur Titerbestimmung von EDTA-Lösungen. Als Referenzmaterial kommt CaCO₃ oder Zink zum Einsatz.

Der Titer ist eine dimensionslose Zahl von etwa 1 zum Korrigieren der angegebenen Konzentration. In der Software der Titriergeräte und den Applikationsberichten von SI Analytics® beschreibt der Begriff "Titer" die exakte Konzentration in mol/l und nicht den dimensionslosen Faktor.

Geräte

Titrator	TL 5000 oder höher
Wechselaufsatz	WA 20 (nur für TL 7000 oder höher)
Elektrode	Cu 1100
Kabel	L1A
Bezugselektrode	B 2920+
Kabel	L 1 N
Rührer	Magnetrührer TM 235 oder ähnliche
Laborgeräte	Becherglas 150 ml
	Magnetrührstab 30 mm

Reagenzien

1	Na₂EDTA - Lösung		
2	Calciumcarbonat Referenzmaterial		
3	Zink Referenzmaterial		
4	Ammoniakwasser 25%		
5	Ammoniumchlorid		
6	Kupfer-EDTA Lösung 0.1 mol/l (Cu(NH ₄) ₂ -EDTA)		
7	Salzsäure ca. 25%		
8	Destilliertes Wasser		
9	Elektrolytlösung L300		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

Pufferlösung pH 10

54,0g Ammoniumchlorid werden in etwas Wasser gelöst, 350ml Ammoniaklösung 25% zugegeben und mit Wasser auf 1,0l aufgefüllt.

Reinigung der Elektroden

Die Elektroden werden mit destilliertem Wasser gereinigt. Die Cu 1100 wird sauber und trocken gelagert, für die Lagerung der Bezugselektrode eignet sich die Elektrolytlösung L300.

Probenvorbereitung

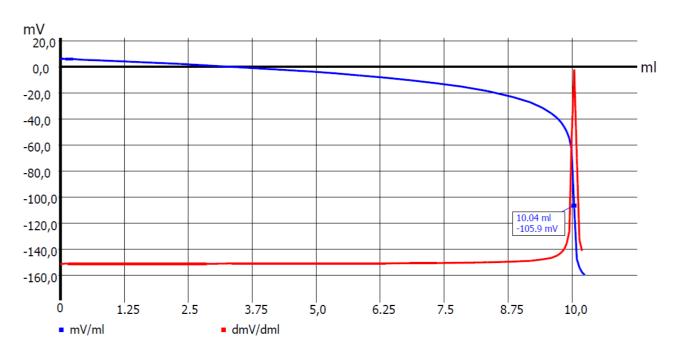
Das CaCO₃ oder Zink Referenzmaterial wird wie im zugehörigen Analysenzertifikat beschrieben getrocknet.

Die Menge des volumetrischen Standards hängt von der Größe der Bürette und der Konzentration der EDTA-Lösung ab. Die Menge sollte so gewählt werden, dass etwa die Hälfte des Bürettenvolumens verbraucht wird. Am gebräuchlichsten ist die 20 ml Bürette. Die erforderliche CaCO₃-Menge kann nach dieser Faustregel abgeschätzt werden:

$$W[g] = 1 * Konzentration[mol/l]$$

Bei kleineren Konzentrationen ist die benötigte Menge Referenzmaterial sehr gering und schwierig zu wiegen. Hier verwendet man am besten einen flüssigen Ca-Standard (z.B. 1000mg/l).

Zur Titerbestimmung einer 0,1 mol/l EDTA-Lösung werden ca. 0,1 g CaCO₃ (oder Zink) in ein 150 ml Becherglas eingewogen und ca. 4 ml HCl 25% zugegeben. Nachdem sich das CaCO₃ (oder Zink) komplett gelöst hat, wird auf 60 ml aufgefüllt und der pH-Wert mit Ammoniakwasser schwach sauer bis neutral eingestellt. Anschließend werden 5 ml Pufferlösung pH 10 und 1 ml Cu-EDTA zugegeben. Die Titration wird mit der EDTA-Lösung bis zu einem Äquivalenzpunkt durchgeführt. Der Verbrauch sollte etwa 5 - 15 ml betragen.


Wenn sich der spezifizierte Gehalt des volumetrischen Standards signifikant von 100% unterscheidet, muss die Einwaage zur Berechnung der Konzentration korrigiert werden:

$$W = \frac{Probenmasse * spezifiziertem Gehalt \%}{100}$$

xylem | Titration 167 TD 2

Titrationsparameter

Probentitration

Standardmethode	Titer EDTA		
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	5 s
		Max. Wartezeit	15 s
		Messzeit	3 s
		Drift	5 mV/min
Startwartezeit	0 s		
Dynamik	flach	Max. Schrittweite	0.5 ml
		Steigung bei max. ml	10
		Min. Schrittweite	0.05 ml
		Steigung bei min. ml	120
Dämpfung	keine	Titrationsrichtung	fallend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	120
Max. Titrationsvolumen	20 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

Bei der Titration mit sehr niedrig konzentrierter EDTA-Lösung wird der Potentialsprung am EQ flacher. In diesem Fall sollte der Steigungswert für den EQ reduziert werden.

xylem | Titration 167 TD 3

Berechnung:

$$T\left[mol/l\right] = \frac{W*F2}{(EQ-B)*M*F1}$$

В	0	Blindwert
W	man	Probenmenge [g]
F2	1000	Umrechnungsfaktor 2
EQ1		Verbrauch des Titrationsmittels am EQ
М	100,09	Molekulargewicht von CaCO₃
F1	1	Umrechnungsfaktor 1

Wird als Referenzmaterial statt $CaCO_3$ Zink verwendet, so muss für M die molare Masse von Zink mit M = 65,38 eingesetzt werden.

Das Ergebnis der Titerbestimmung sollte in mol/l direkt im Wechselaufsatz gespeichert werden.

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

